Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
p:ki:smi [2024/03/06 15:45] – [🇨🇭 SMI-Vorhersage] Ralf Kretzschmarp:ki:smi [2025/09/05 13:45] (aktuell) Allemann, Peter
Zeile 18: Zeile 18:
     * Im Register ''Resultat'' siehst du braun den letzten Teil der Trainingsdaten von 2022. Das trainierte neuronale Netz nimmt die letzten Daten aus 2022 als Eingang und sagt ausgehend davon Schritt für Schritt die grüne Kurve für 2023 vorher. Die orange Kurve stellt die wahren SMI-Werte 2023 dar.      * Im Register ''Resultat'' siehst du braun den letzten Teil der Trainingsdaten von 2022. Das trainierte neuronale Netz nimmt die letzten Daten aus 2022 als Eingang und sagt ausgehend davon Schritt für Schritt die grüne Kurve für 2023 vorher. Die orange Kurve stellt die wahren SMI-Werte 2023 dar. 
  
-{{exorciser/jspg?javascript=%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%2F%2F%20Diese%20Trainings-%20und%20Updateparameter%20d%C3%BCrfen%20ge%C3%A4ndert%20werden.%0A%0Aconst%20TIMESERIES_FEATURES%20%3D%20100%3B%20%2F%2F%20ganzahliger%20Wert%20von%201%20bis%20250%0A%0Aconst%20LERNRATE%20%3D%200.0001%3B%20%2F%2F%20Dezimalzahl%20%3E%200%0Aconst%20ANZAHL_HIDDEN_NEURONS%20%3D%2050%3B%20%2F%2F%20ganzzahliger%20Wert%20%3E%200%0Aconst%20ANZAHL_EPOCHEN%20%3D%20500%3B%20%2F%2F%20ganzzahliger%20Wert%20%3E%200%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20CONSTANTS%20AND%20GLOBAL%20VARIABLES%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%0A%2F%2F%20data%0Aconst%20trainingData%20%3D%20%5B10738.39%2C%2010694.09%2C%2010747.08%2C%2010778.67%2C%2010797.99%2C%2010870.42%2C%2010875.25%2C%2010846.88%2C%2010850.81%2C%2010877.06%2C%2010888.54%2C%2010876.98%2C%2010945.46%2C%2010913.11%2C%2010930.81%2C%2010925.7%2C%2010964.05%2C%2010904.24%2C%2010849.82%2C%2010591.06%2C%2010740.22%2C%2010803.57%2C%2010775.68%2C%2010860.95%2C%2010755.47%2C%2010778.83%2C%2010803.67%2C%2010825.75%2C%2010852.91%2C%2010880.37%2C%2010940.99%2C%2010907.6%2C%2010809.28%2C%2010717.71%2C%2010704.75%2C%2010697.38%2C%2010609.03%2C%2010727.7%2C%2010658.87%2C%2010522.22%2C%2010706.59%2C%2010817.15%2C%2010771.88%2C%2010750.09%2C%2010607.79%2C%2010830.38%2C%2010857.97%2C%2010909.77%2C%2010883.23%2C%2010839.93%2C%2010867.33%2C%2010944.48%2C%2010922.49%2C%2010973.76%2C%2010967.37%2C%2011048.58%2C%2011098.66%2C%2011063.87%2C%2011098.81%2C%2011116.81%2C%2011089.6%2C%2011121.42%2C%2011047.37%2C%2011118.03%2C%2011182.95%2C%2011128.18%2C%2011206.88%2C%2011238.52%2C%2011181.35%2C%2011122.37%2C%2011156.21%2C%2011198.7%2C%2011262.97%2C%2011209.84%2C%2011078.98%2C%2011209.09%2C%2011224.9%2C%2011200.54%2C%2011162.09%2C%2011092.08%2C%2011103.46%2C%2011079.51%2C%2011022.34%2C%2011119%2C%2010970.93%2C%2011108.88%2C%2011111.1%2C%2011173.57%2C%2011123.67%2C%2010989.32%2C%2011033.9%2C%2011120.77%2C%2011135.37%2C%2011141.75%2C%2011045.2%2C%2011152.08%2C%2011225.58%2C%2011305.74%2C%2011348.74%2C%2011340.27%2C%2011426.15%2C%2011363.45%2C%2011434.88%2C%2011470.35%2C%2011510.6%2C%2011570.68%2C%2011630.66%2C%2011656.89%2C%2011788.1%2C%2011810.8%2C%2011841.3%2C%2011866.41%2C%2011921.97%2C%2011982.03%2C%2012011.11%2C%2011941.25%2C%2011995.63%2C%2011982.48%2C%2011898.62%2C%2011993.64%2C%2011999.7%2C%2012009.17%2C%2012028.45%2C%2011942.72%2C%2011977.03%2C%2011964.84%2C%2011967.57%2C%2011965.22%2C%2012085.51%2C%2011924.66%2C%2011989.81%2C%2012081.62%2C%2012071.05%2C%2012043.35%2C%2011976.79%2C%2012026.5%2C%2011862.08%2C%2011945.68%2C%2012021.58%2C%2011977%2C%2012130.83%2C%2012049.63%2C%2012021.09%2C%2012073.23%2C%2012086.74%2C%2012116.82%2C%2012171.02%2C%2012163.22%2C%2012178.74%2C%2012199.82%2C%2012176.3%2C%2012310.75%2C%2012361.69%2C%2012387.9%2C%2012429.17%2C%2012464.44%2C%2012419.14%2C%2012477.44%2C%2012545.35%2C%2012403.58%2C%2012415.66%2C%2012476.87%2C%2012436.66%2C%2012364.57%2C%2012409.03%2C%2012439%2C%2012436.58%2C%2012411.11%2C%2012432.79%2C%2012432.46%2C%2012351.84%2C%2012430.23%2C%2012344.38%2C%2012215.14%2C%2012116.43%2C%2012060.64%2C%2012074.81%2C%2012097.28%2C%2011984.83%2C%2012028.44%2C%2011935.53%2C%2011766.42%2C%2011789.17%2C%2011837.57%2C%2011938.62%2C%2011817.2%2C%2011691.18%2C%2011485.58%2C%2011628.33%2C%2011642.45%2C%2011575.37%2C%2011582.35%2C%2011587%2C%2011569.39%2C%2011763.64%2C%2011764.99%2C%2011771.57%2C%2011756.76%2C%2011814.59%2C%2011892.52%2C%2011961.34%2C%2011968.08%2C%2011942.74%2C%2012013.15%2C%2012039.14%2C%2012056.21%2C%2012063.17%2C%2012146.52%2C%2012087.45%2C%2012153.1%2C%2012108.17%2C%2012216.33%2C%2012321%2C%2012383.27%2C%2012403.05%2C%2012321.85%2C%2012353.35%2C%2012367.52%2C%2012401.4%2C%2012421.08%2C%2012516.05%2C%2012517.12%2C%2012557.34%2C%2012600.15%2C%2012553.19%2C%2012545.01%2C%2012510.81%2C%2012366.73%2C%2012395.72%2C%2012449.68%2C%2012199.21%2C%2012220.74%2C%2012159.69%2C%2012266.46%2C%2012177.52%2C%2012175.77%2C%2012375.35%2C%2012513.62%2C%2012597.43%2C%2012607.63%2C%2012607.73%2C%2012551.28%2C%2012411.58%2C%2012530.95%2C%2012790.89%2C%2012715.48%2C%2012589.89%2C%2012682.53%2C%2012713.9%2C%2012785.32%2C%2012866.9%2C%2012970.53%2C%2012926.56%2C%2012875.66%2C%2012939.17%2C%2012900.97%2C%2012906.37%2C%2012792.28%2C%2012797.94%2C%2012597.35%2C%2012709.71%2C%2012670.47%2C%2012620.44%2C%2012525.63%2C%2012633.21%2C%2012529.56%2C%2012525.69%2C%2012560.7%2C%2012355.54%2C%2011881.3%2C%2011945.69%2C%2012098.26%2C%2012176.9%2C%2012104.44%2C%2012226.7%2C%2012359.8%2C%2012360.37%2C%2012234.15%2C%2012140.25%2C%2012193.81%2C%2012155.66%2C%2012367.82%2C%2012313.16%2C%2012231.97%2C%2012026.37%2C%2012181.86%2C%2012191.57%2C%2012075.27%2C%2012010.09%2C%2011891.88%2C%2011959.39%2C%2011941.89%2C%2011636.76%2C%2011987.31%2C%2011986.78%2C%2011862.28%2C%2011871.59%2C%2011675.7%2C%2011300.13%2C%2011204.67%2C%2011057.06%2C%2011493.36%2C%2011391.1%2C%2011495.69%2C%2011678.94%2C%2011682.22%2C%2011900.96%2C%2012061.87%2C%2012184.99%2C%2012171.28%2C%2012202.62%2C%2012099.5%2C%2012131.45%2C%2012121.67%2C%2012155.95%2C%2012325.58%2C%2012243.73%2C%2012161.53%2C%2012179.08%2C%2012340.87%2C%2012376.97%2C%2012320.1%2C%2012372.46%2C%2012507.69%2C%2012528.61%2C%2012378.87%2C%2012378.68%2C%2012475.08%2C%2012281.42%2C%2012310.17%2C%2012301.33%2C%2012258.33%2C%2012084.98%2C%2011933.28%2C%2012051.48%2C%2012068.41%2C%2012128.76%2C%2011971.73%2C%2012001.88%2C%2011880.24%2C%2011877.27%2C%2011730.42%2C%2011444.18%2C%2011541.72%2C%2011553.66%2C%2011506.13%2C%2011650.42%2C%2011672.23%2C%2011730.44%2C%2011579.14%2C%2011309.49%2C%2011308.98%2C%2011466.28%2C%2011483.56%2C%2011491.8%2C%2011647.17%2C%2011736.26%2C%2011611.38%2C%2011494.12%2C%2011550.2%2C%2011529.16%2C%2011534.18%2C%2011467.39%2C%2011322.43%2C%2011084.62%2C%2010896.25%2C%2010699.07%2C%2010783.59%2C%2010475.37%2C%2010451.31%2C%2010485.91%2C%2010479.84%2C%2010528.34%2C%2010453.31%2C%2010823.12%2C%2010906.82%2C%2010809.57%2C%2010811.75%2C%2010741.21%2C%2010770.4%2C%2010881.97%2C%2010702.5%2C%2010840.6%2C%2010940.98%2C%2011015.03%2C%2011027.16%2C%2011069.83%2C%2010904.85%2C%2010799.52%2C%2010982.09%2C%2011010.18%2C%2011122.08%2C%2011059.49%2C%2011134.74%2C%2011096.12%2C%2011129.35%2C%2011102.31%2C%2011056.74%2C%2011129.33%2C%2011145.91%2C%2011118.1%2C%2011178.99%2C%2011202.66%2C%2011123.07%2C%2011166.32%2C%2011132.48%2C%2011155.1%2C%2011154.58%2C%2011128.24%2C%2011171.54%2C%2011130.44%2C%2011128.19%2C%2011167.59%2C%2011156.72%2C%2011085.84%2C%2010933.06%2C%2011012.87%2C%2011063.88%2C%2010942.16%2C%2010896.74%2C%2010884.95%2C%2010855.03%2C%2010663.44%2C%2010891.71%2C%2010819.54%2C%2010834.18%2C%2010805.16%2C%2010790.32%2C%2010900.24%2C%2010990.75%2C%2010891.54%2C%2010754.4%2C%2010746.7%2C%2010610.65%2C%2010617.01%2C%2010476.54%2C%2010429.4%2C%2010297.65%2C%2010137.78%2C%2010072.62%2C%2010126.43%2C%2010220.76%2C%2010126.99%2C%2010267.55%2C%2010290.71%2C%2010590.92%2C%2010477.69%2C%2010391.13%2C%2010308.57%2C%2010262.52%2C%2010207.83%2C%2010199.32%2C%2010227.9%2C%2010329.34%2C%2010498.71%2C%2010578.76%2C%2010484.14%2C%2010473.45%2C%2010418.6%2C%2010595.53%2C%2010773.34%2C%2010817.21%2C%2010706.62%2C%2010772.37%2C%2010827.93%2C%2010783.65%2C%2010806.23%2C%2010710.59%2C%2010787.77%2C%2010750.39%2C%2010827.04%2C%2010904.33%2C%2011120.49%2C%2011127.15%2C%2010999.59%2C%2011026.22%2C%2010936.62%2C%2010917.88%2C%2011045.49%2C%2011085.04%2C%2011074.3%2C%2011094.46%2C%2011157.56%2C%2011168.03%2C%2011162.16%2C%2011077.81%2C%2011127.77%2C%2011238.2%2C%2011198.13%2C%2011194.67%2C%2011109.33%2C%2011009.95%2C%2011004.53%2C%2011068.3%2C%2011033.64%2C%2011136.62%2C%2011160.69%2C%2010880.14%2C%2010770.38%2C%2010773.23%2C%2010659.19%2C%2010845.59%2C%2010774.64%2C%2010804.68%2C%2010839.22%2C%2010812.67%2C%2010857.35%2C%2010729.4%5D%3B%0Aconst%20testingData%20%3D%20%5B10978.64%2C%2011140.27%2C%2011057.39%2C%2011144.54%2C%2011212.57%2C%2011162.15%2C%2011246.01%2C%2011287.82%2C%2011290.79%2C%2011435.99%2C%2011401.99%2C%2011366.62%2C%2011258.97%2C%2011295.02%2C%2011406.27%2C%2011406.29%2C%2011404.77%2C%2011317.56%2C%2011332.3%2C%2011379.64%2C%2011285.78%2C%2011200.93%2C%2011188.42%2C%2011349.39%2C%2011283.25%2C%2011233.87%2C%2011276.28%2C%2011217.73%2C%2011130.46%2C%2011209.34%2C%2011231.91%2C%2011272.67%2C%2011194.91%2C%2011256.29%2C%2011266.68%2C%2011282.16%2C%2011300.29%2C%2011247.75%2C%2011181.77%2C%2011219.93%2C%2011098.35%2C%2011056.08%2C%2011165.58%2C%2011190.09%2C%2011147.25%2C%2011064.08%2C%2011025.26%2C%2010948.85%2C%2010765.26%2C%2010632.05%2C%2010716.72%2C%2010516.4%2C%2010719.1%2C%2010613.55%2C%2010643.64%2C%2010792.58%2C%2010782.28%2C%2010718.54%2C%2010634.04%2C%2010786.22%2C%2010839.11%2C%2010963.31%2C%2011032.21%2C%2011106.24%2C%2011093.09%2C%2011073.48%2C%2011115.4%2C%2011230.07%2C%2011265.3%2C%2011231.99%2C%2011258.95%2C%2011342.86%2C%2011311.76%2C%2011358.98%2C%2011366.22%2C%2011390.64%2C%2011460.58%2C%2011467.2%2C%2011513.12%2C%2011364.91%2C%2011361.89%2C%2011437.14%2C%2011423.33%2C%2011506.19%2C%2011456.37%2C%2011554.24%2C%2011595.25%2C%2011546.04%2C%2011447.23%2C%2011522.97%2C%2011564.73%2C%2011578.25%2C%2011519.87%2C%2011437.78%2C%2011571.16%2C%2011553.23%2C%2011484.9%2C%2011383.14%2C%2011325.26%2C%2011434.24%2C%2011282.45%2C%2011217.89%2C%2011296.28%2C%2011443.35%2C%2011415%2C%2011468.27%2C%2011348.11%2C%2011308.9%2C%2011254.42%2C%2011301.25%2C%2011327.27%2C%2011278.3%2C%2011302.83%2C%2011386.26%2C%2011306.64%2C%2011215.91%2C%2011173.65%2C%2011183.42%2C%2011221.22%2C%2011141.9%2C%2011142.65%2C%2011183.55%2C%2011170.51%2C%2011280.29%5D%3B%0A%0A%2F%2F%20further%20constants%0Aconst%20PREDICTION_LIMIT%20%3D%20trainingData.length%20%2F%202%3B%0Aconst%20GRAPH_WIDH%20%3D%20600%3B%0A%0A%2F%2F%20neural%20network%20structure%0Aconst%20MODEL_LAYERS%20%3D%20%5B%0A%09tf.layers.dense%28%7B%0A%09%09name%3A%20%27HiddenLayer1%27%2C%0A%09%09inputShape%3A%20%5BTIMESERIES_FEATURES%5D%2C%0A%09%09units%3A%20ANZAHL_HIDDEN_NEURONS%2C%0A%09%09activation%3A%20%27LeakyReLU%27%0A%09%7D%29%2C%0A%09tf.layers.dense%28%7B%0A%09%09name%3A%20%27HiddenLayer2%27%2C%0A%09%09units%3A%20ANZAHL_HIDDEN_NEURONS%2C%0A%09%09activation%3A%20%27LeakyReLU%27%0A%09%7D%29%2C%0A%09tf.layers.dense%28%7B%0A%09%09name%3A%20%27OutputLayer%27%2C%0A%09%09units%3A%201%2C%0A%09%09activation%3A%20%27linear%27%0A%09%7D%29%0A%5D%3B%0A%0A%2F%2F%20neural%20network%20algorithms%0Aconst%20MODEL_COMPILE%20%3D%20%7B%0A%09optimizer%3A%20tf.train.adam%28LERNRATE%29%2C%0A%09loss%3A%20tf.losses.absoluteDifference%0A%7D%3B%0A%0A%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20DATA%20HANDLING%20FUNCTIONS%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%0A%2F%2F%0A%2F%2F%20create%20input%20data%0A%2F%2F%0Afunction%20createInputArray%28valueArray%29%20%7B%0A%09let%20inputArray%20%3D%20new%20Array%28valueArray.length%20-%20TIMESERIES_FEATURES%29.fill%280%29.map%28%28%29%20%3D%3E%20new%20Array%28TIMESERIES_FEATURES%29.fill%280%29%29%3B%20%2F%2F%20empty%20two-dimensional%20array%0A%09for%20%28let%20v%20%3D%200%3B%20v%20%3C%20valueArray.length%20-%20TIMESERIES_FEATURES%3B%20v%2B%2B%29%20%7B%0A%09%09for%20%28let%20f%20%3D%200%3B%20f%20%3C%20TIMESERIES_FEATURES%3B%20f%2B%2B%29%20%7B%0A%09%09%09inputArray%5Bv%5D%5Bf%5D%20%3D%20valueArray%5Bv%20%2B%20f%5D%3B%0A%09%09%7D%0A%09%7D%0A%09return%20inputArray%3B%0A%7D%0A%0A%0A%2F%2F%0A%2F%2F%20create%20output%20data%0A%2F%2F%0Afunction%20createOutputArray%28valueArray%29%20%7B%0A%09let%20outputArray%20%3D%20new%20Array%28valueArray.length%20-%20TIMESERIES_FEATURES%29.fill%280%29%3B%0A%09for%20%28v%20%3D%200%3B%20v%20%3C%20valueArray.length%20-%20TIMESERIES_FEATURES%3B%20v%2B%2B%29%20%7B%0A%09%09outputArray%5Bv%5D%20%3D%20valueArray%5Bv%20%2B%20TIMESERIES_FEATURES%5D%3B%0A%09%7D%0A%09return%20outputArray%3B%0A%7D%0A%0A%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20NEURAL%20NETWORK%20FUNCTIONS%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%0A%2F%2F%0A%2F%2F%20build%20model%0A%2F%2F%0Afunction%20buildModel%28%29%20%7B%0A%09const%20model%20%3D%20tf.sequential%28%7B%0A%09%09layers%3A%20MODEL_LAYERS%0A%09%7D%29%3B%0A%09%2F%2F%20neural%20network%20training%0A%09model.compile%28MODEL_COMPILE%29%3B%0A%09return%20model%3B%0A%7D%0A%0A%0A%2F%2F%0A%2F%2F%20train%20model%0A%2F%2F%0Aasync%20function%20trainModel%28model%2C%20trainInput%2C%20trainOutput%29%20%7B%0A%09let%20history%20%3D%20await%20model.fit%28%0A%09%09tf.tensor%28trainInput%29%2C%20tf.tensor%28trainOutput%29%2C%20%7B%0A%09%09%09epochs%3A%20ANZAHL_EPOCHEN%20%2B%201%2C%0A%09%09%09batchSize%3A%20trainInput.length%2C%0A%09%09%09shuffle%3A%20true%2C%0A%09%09%09callbacks%3A%20%5B%0A%09%09%09%09tfvis.show.fitCallbacks%28%7B%0A%09%09%09%09%09name%3A%20%27Trainingsfehler%27%2C%0A%09%09%09%09%09tab%3A%20%27Training%27%2C%0A%09%09%09%09%09styles%3A%20%7B%0A%09%09%09%09%09%09width%3A%20GRAPH_WIDH%0A%09%09%09%09%09%7D%0A%09%09%09%09%7D%2C%20%5B%27loss%27%5D%2C%20%7B%0A%09%09%09%09%09height%3A%20200%2C%0A%09%09%09%09%09callbacks%3A%20%5B%27onEpochEnd%27%5D%2C%0A%09%09%09%09%09yLabel%3A%20%27MSE%27%0A%09%09%09%09%7D%29%2C%0A%09%09%09%5D%0A%09%09%7D%29%3B%0A%09return%20history%3B%0A%7D%0A%0A%0A%2F%2F%0A%2F%2F%20predict%20timeseries%20ahead%20and%20return%20object%20for%20tfvis%0A%2F%2F%0Aasync%20function%20predictTimeseries%28model%2C%20inputArray%2C%20observedArray%29%20%7B%0A%0A%09%2F%2F%20create%20last%20known%20input%0A%09let%20inputSample%20%3D%20%5B%5D%3B%0A%09inputSample.push%28%5B%5D%29%3B%0A%09for%20%28let%20t%20%3D%200%3B%20t%20%3C%20TIMESERIES_FEATURES%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09inputSample%5B0%5D.push%28inputArray%5BinputArray.length%20-%20TIMESERIES_FEATURES%20%2B%20t%5D%29%3B%0A%09%7D%0A%0A%09%2F%2F%20predict%20ahead%0A%09let%20outputTensor%2C%20outputArray%3B%0A%09let%20predictedOutput%20%3D%20%5B%5D%3B%0A%09for%20%28t%20%3D%200%3B%20t%20%3C%20observedArray.length%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09%2F%2F%20predict%20one%20timestep%0A%09%09outputTensor%20%3D%20await%20model.predict%28tf.tensor%28inputSample%29%29%3B%0A%09%09outputArray%20%3D%20await%20outputTensor.arraySync%28%29%3B%0A%09%09predictedOutput.push%28outputArray%5B0%5D%5B0%5D%29%3B%0A%09%09%2F%2F%20compose%20new%20input%20sample%0A%09%09inputSample%5B0%5D.shift%28%29%3B%0A%09%09inputSample%5B0%5D.push%28predictedOutput%5Bt%5D%29%3B%0A%09%7D%0A%09return%20predictedOutput%3B%0A%7D%0A%0A%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20FUNCTIONS%20FOR%20VISUALISATION%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%2F%2F%0A%2F%2F%20draw%20timeseries%20prediction%0A%2F%2F%0Afunction%20drawTrainingData%28trainingData%29%20%7B%0A%09%2F%2F%20training%20values%0A%09let%20trainingArrayObject%20%3D%20%5B%5D%3B%0A%09for%20%28let%20t%20%3D%200%3B%20t%20%3C%20trainingData.length%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09trainingArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20trainingData%5Bt%5D%20%2a%2010%0A%09%09%7D%29%3B%0A%09%7D%0A%09%2F%2F%20draw%20everything%0A%09data%20%3D%20%7B%0A%09%09values%3A%20%5BtrainingArrayObject%5D%2C%0A%09%09series%3A%20%5B%22Trainingsdaten%22%5D%0A%09%7D%3B%0A%09surface%20%3D%20%7B%0A%09%09name%3A%20%22SMI%20Trainingsdaten%202021%20%26%202022%22%2C%0A%09%09tab%3A%20%27Trainingsdaten%27%2C%0A%09%09styles%3A%20%7B%0A%09%09%09width%3A%20GRAPH_WIDH%0A%09%09%7D%0A%09%7D%3B%0A%09look%20%3D%20%7B%0A%09%09xLabel%3A%20%27Aufeinanderfolgende%20B%C3%B6rsentage%27%2C%0A%09%09yLabel%3A%20%27SMI-Index%27%2C%0A%09%09zoomToFit%3A%20true%2C%0A%09%09seriesColors%3A%20%5B%22limegreen%22%5D%0A%09%7D%3B%0A%09tfvis.render.linechart%28surface%2C%20data%2C%20look%29%3B%0A%7D%0A%0A%0A%2F%2F%0A%2F%2F%20draw%20timeseries%20prediction%0A%2F%2F%0Afunction%20drawTimeseries%28pastArray%2C%20observedArray%2C%20predictedArray%29%20%7B%0A%09%2F%2F%20past%0A%09let%20pastArrayObject%20%3D%20%5B%5D%3B%0A%09%2F%2F%20get%20past%20values%0A%09for%20%28let%20t%20%3D%200%3B%20t%20%3C%20TIMESERIES_FEATURES%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09pastArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20pastArray%5Bt%20%2B%20pastArray.length%20-%20TIMESERIES_FEATURES%5D%20%2a%2010%0A%09%09%7D%29%3B%0A%09%7D%0A%09for%20%28let%20t%20%3D%20TIMESERIES_FEATURES%3B%20t%20%3C%20TIMESERIES_FEATURES%20%2B%20observedArray.length%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09pastArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20null%0A%09%09%7D%29%3B%0A%09%7D%0A%09%2F%2F%20observed%20values%0A%09let%20observedArrayObject%20%3D%20%5B%5D%3B%0A%09for%20%28let%20t%20%3D%200%3B%20t%20%3C%20TIMESERIES_FEATURES%20-%201%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09observedArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20null%0A%09%09%7D%29%3B%0A%09%7D%0A%09observedArrayObject.push%28%7B%0A%09%09x%3A%20TIMESERIES_FEATURES%20-%201%2C%0A%09%09y%3A%20pastArray%5BpastArray.length%20-%201%5D%20%2a%2010%0A%09%7D%29%3B%0A%09for%20%28let%20t%20%3D%20TIMESERIES_FEATURES%3B%20t%20%3C%20TIMESERIES_FEATURES%20%2B%20observedArray.length%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09observedArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20observedArray%5Bt%20-%20TIMESERIES_FEATURES%5D%20%2a%2010%0A%09%09%7D%29%3B%0A%09%7D%0A%09%2F%2F%20predicted%20values%0A%09let%20predictedArrayObject%20%3D%20%5B%5D%3B%0A%09for%20%28let%20t%20%3D%200%3B%20t%20%3C%20TIMESERIES_FEATURES%20-%201%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09predictedArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20null%0A%09%09%7D%29%3B%0A%09%7D%0A%09predictedArrayObject.push%28%7B%0A%09%09x%3A%20TIMESERIES_FEATURES%20-%201%2C%0A%09%09y%3A%20pastArray%5BpastArray.length%20-%201%5D%20%2a%2010%0A%09%7D%29%3B%0A%09for%20%28let%20t%20%3D%20TIMESERIES_FEATURES%3B%20t%20%3C%20TIMESERIES_FEATURES%20%2B%20observedArray.length%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09predictedArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20predictedArray%5Bt%20-%20TIMESERIES_FEATURES%5D%20%2a%2010%0A%09%09%7D%29%3B%0A%09%7D%0A%09%2F%2F%20draw%20everything%0A%09data%20%3D%20%7B%0A%09%09values%3A%20%5BobservedArrayObject%2C%20predictedArrayObject%2C%20pastArrayObject%5D%2C%0A%09%09series%3A%20%5B%22beobachtet%22%2C%20%22vorhergesagt%22%2C%20%22vergangen%22%5D%0A%09%7D%3B%0A%09surface%20%3D%20%7B%0A%09%09name%3A%20%22SMI%20Vorhersage%201te%20Jahresh%C3%A4lfte%202023%22%2C%0A%09%09tab%3A%20%27Resultat%27%2C%0A%09%09styles%3A%20%7B%0A%09%09%09width%3A%20GRAPH_WIDH%0A%09%09%7D%0A%09%7D%3B%0A%09look%20%3D%20%7B%0A%09%09xLabel%3A%20%27Aufeinanderfolgende%20B%C3%B6rsentage%27%2C%0A%09%09yLabel%3A%20%27SMI-Index%27%2C%0A%09%09zoomToFit%3A%20true%2C%0A%09%09seriesColors%3A%20%5B%22coral%22%2C%20%22saddlebrown%22%2C%20%22limegreen%22%5D%0A%09%7D%3B%0A%09tfvis.render.linechart%28surface%2C%20data%2C%20look%29%3B%0A%7D%0A%0A%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20MAIN%20PROGRAM%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%0A%2F%2F%0A%2F%2F%20main%20function%0A%2F%2F%0Aasync%20function%20run%28%29%20%7B%0A%09%2F%2Fnoprotect%0A%0A%09%2F%2F%20check%20for%20too%20many%20input%20features%0A%09if%20%28TIMESERIES_FEATURES%20%3E%20PREDICTION_LIMIT%29%20%7B%0A%09%09console.log%28%22%E2%9A%A0%EF%B8%8F%20Die%20Anzahl%20TIMESERIES_FEATURES%20ist%20zu%20hoch%21%22%29%3B%0A%09%09return%3B%0A%09%7D%0A%0A%09%2F%2F%20write%20preferences%20on%20console%0A%09console.log%28%22SMI-Vorhersage%22%29%3B%0A%09console.log%28%22Neuronales%20Netz%3A%20Anzahl%20Eingangsgr%C3%B6ssen%3A%20%22%20%2B%20TIMESERIES_FEATURES%20%2B%20%22%2C%20Anzahl%20Hidden%20Neuronen%3A%20%22%20%2B%20ANZAHL_HIDDEN_NEURONS%29%3B%0A%09console.log%28%22Training%3A%20Lernrate%3A%20%22%20%2B%20LERNRATE%20%2B%20%22%2C%20Epochen%3A%20%22%20%2B%20ANZAHL_EPOCHEN%29%3B%0A%0A%09drawTrainingData%28trainingData%29%3B%0A%0A%09%2F%2F%20create%20input%20and%20output%20data%0A%09let%20inputArray%20%3D%20createInputArray%28trainingData%29%3B%0A%09let%20outputArray%20%3D%20createOutputArray%28trainingData%29%3B%0A%0A%09%2F%2F%20build%20and%20show%20model%0A%09let%20model%20%3D%20buildModel%28%29%3B%0A%09if%20%28%21tfvis.visor%28%29.isFullscreen%28%29%29%20%7B%0A%09%09tfvis.visor%28%29.toggleFullScreen%28%29%3B%0A%09%7D%0A%09tfvis.show.modelSummary%28%7B%0A%09%09name%3A%20%27Neuronales%20Netz%27%2C%0A%09%09tab%3A%20%27Modell%27%2C%0A%09%09styles%3A%20%7B%0A%09%09%09width%3A%20GRAPH_WIDH%0A%09%09%7D%0A%09%7D%2C%20model%29%3B%0A%0A%09%2F%2F%20train%20model%0A%09let%20history%20%3D%20await%20trainModel%28model%2C%20inputArray%2C%20outputArray%29%3B%0A%09console.log%28%22Entg%C3%BCltiger%20Trainingsfehler%20%28MSE%29%3A%20%22%20%2B%20history.history.loss%5BANZAHL_EPOCHEN%5D%29%3B%0A%0A%09%2F%2F%20predict%20and%20show%20timeseries%0A%09let%20predictedTimeseries%20%3D%20await%20predictTimeseries%28model%2C%20trainingData%2C%20testingData%29%3B%0A%09drawTimeseries%28trainingData%2C%20testingData%2C%20predictedTimeseries%29%3B%0A%0A%7D%0A%0A%0Adocument.addEventListener%28%27DOMContentLoaded%27%2C%20run%29%3B&css=undefined&html=%3Cscript%20src%3D%22https%3A%2F%2Fcdn.jsdelivr.net%2Fnpm%2Fp5%22%3E%3C%2Fscript%3E%0A%3Cscript%20src%3D%22https%3A%2F%2Fcdn.jsdelivr.net%2Fnpm%2F%40tensorflow%2Ftfjs%40latest%2Fdist%2Ftf.min.js%22%3E%3C%2Fscript%3E%0A%3Cscript%20src%3D%22https%3A%2F%2Fcdn.jsdelivr.net%2Fnpm%2F%40tensorflow%2Ftfjs-vis%22%3E%3C%2Fscript%3E&autorun=off&height=700px#SMI}}+{{exorciser/jspg?javascript=%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%2F%2F%20Diese%20Trainings-%20und%20Updateparameter%20d%C3%BCrfen%20ge%C3%A4ndert%20werden.%0A%0Aconst%20TIMESERIES_FEATURES%20%3D%20100%3B%20%2F%2F%20ganzahliger%20Wert%20von%201%20bis%20250%0A%0Aconst%20LERNRATE%20%3D%200.0001%3B%20%2F%2F%20Dezimalzahl%20%3E%200%0Aconst%20ANZAHL_HIDDEN_NEURONS%20%3D%2050%3B%20%2F%2F%20ganzzahliger%20Wert%20%3E%200%0Aconst%20ANZAHL_EPOCHEN%20%3D%20500%3B%20%2F%2F%20ganzzahliger%20Wert%20%3E%200%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20CONSTANTS%20AND%20GLOBAL%20VARIABLES%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%0A%2F%2F%20data%0Aconst%20trainingData%20%3D%20%5B10738.39%2C%2010694.09%2C%2010747.08%2C%2010778.67%2C%2010797.99%2C%2010870.42%2C%2010875.25%2C%2010846.88%2C%2010850.81%2C%2010877.06%2C%2010888.54%2C%2010876.98%2C%2010945.46%2C%2010913.11%2C%2010930.81%2C%2010925.7%2C%2010964.05%2C%2010904.24%2C%2010849.82%2C%2010591.06%2C%2010740.22%2C%2010803.57%2C%2010775.68%2C%2010860.95%2C%2010755.47%2C%2010778.83%2C%2010803.67%2C%2010825.75%2C%2010852.91%2C%2010880.37%2C%2010940.99%2C%2010907.6%2C%2010809.28%2C%2010717.71%2C%2010704.75%2C%2010697.38%2C%2010609.03%2C%2010727.7%2C%2010658.87%2C%2010522.22%2C%2010706.59%2C%2010817.15%2C%2010771.88%2C%2010750.09%2C%2010607.79%2C%2010830.38%2C%2010857.97%2C%2010909.77%2C%2010883.23%2C%2010839.93%2C%2010867.33%2C%2010944.48%2C%2010922.49%2C%2010973.76%2C%2010967.37%2C%2011048.58%2C%2011098.66%2C%2011063.87%2C%2011098.81%2C%2011116.81%2C%2011089.6%2C%2011121.42%2C%2011047.37%2C%2011118.03%2C%2011182.95%2C%2011128.18%2C%2011206.88%2C%2011238.52%2C%2011181.35%2C%2011122.37%2C%2011156.21%2C%2011198.7%2C%2011262.97%2C%2011209.84%2C%2011078.98%2C%2011209.09%2C%2011224.9%2C%2011200.54%2C%2011162.09%2C%2011092.08%2C%2011103.46%2C%2011079.51%2C%2011022.34%2C%2011119%2C%2010970.93%2C%2011108.88%2C%2011111.1%2C%2011173.57%2C%2011123.67%2C%2010989.32%2C%2011033.9%2C%2011120.77%2C%2011135.37%2C%2011141.75%2C%2011045.2%2C%2011152.08%2C%2011225.58%2C%2011305.74%2C%2011348.74%2C%2011340.27%2C%2011426.15%2C%2011363.45%2C%2011434.88%2C%2011470.35%2C%2011510.6%2C%2011570.68%2C%2011630.66%2C%2011656.89%2C%2011788.1%2C%2011810.8%2C%2011841.3%2C%2011866.41%2C%2011921.97%2C%2011982.03%2C%2012011.11%2C%2011941.25%2C%2011995.63%2C%2011982.48%2C%2011898.62%2C%2011993.64%2C%2011999.7%2C%2012009.17%2C%2012028.45%2C%2011942.72%2C%2011977.03%2C%2011964.84%2C%2011967.57%2C%2011965.22%2C%2012085.51%2C%2011924.66%2C%2011989.81%2C%2012081.62%2C%2012071.05%2C%2012043.35%2C%2011976.79%2C%2012026.5%2C%2011862.08%2C%2011945.68%2C%2012021.58%2C%2011977%2C%2012130.83%2C%2012049.63%2C%2012021.09%2C%2012073.23%2C%2012086.74%2C%2012116.82%2C%2012171.02%2C%2012163.22%2C%2012178.74%2C%2012199.82%2C%2012176.3%2C%2012310.75%2C%2012361.69%2C%2012387.9%2C%2012429.17%2C%2012464.44%2C%2012419.14%2C%2012477.44%2C%2012545.35%2C%2012403.58%2C%2012415.66%2C%2012476.87%2C%2012436.66%2C%2012364.57%2C%2012409.03%2C%2012439%2C%2012436.58%2C%2012411.11%2C%2012432.79%2C%2012432.46%2C%2012351.84%2C%2012430.23%2C%2012344.38%2C%2012215.14%2C%2012116.43%2C%2012060.64%2C%2012074.81%2C%2012097.28%2C%2011984.83%2C%2012028.44%2C%2011935.53%2C%2011766.42%2C%2011789.17%2C%2011837.57%2C%2011938.62%2C%2011817.2%2C%2011691.18%2C%2011485.58%2C%2011628.33%2C%2011642.45%2C%2011575.37%2C%2011582.35%2C%2011587%2C%2011569.39%2C%2011763.64%2C%2011764.99%2C%2011771.57%2C%2011756.76%2C%2011814.59%2C%2011892.52%2C%2011961.34%2C%2011968.08%2C%2011942.74%2C%2012013.15%2C%2012039.14%2C%2012056.21%2C%2012063.17%2C%2012146.52%2C%2012087.45%2C%2012153.1%2C%2012108.17%2C%2012216.33%2C%2012321%2C%2012383.27%2C%2012403.05%2C%2012321.85%2C%2012353.35%2C%2012367.52%2C%2012401.4%2C%2012421.08%2C%2012516.05%2C%2012517.12%2C%2012557.34%2C%2012600.15%2C%2012553.19%2C%2012545.01%2C%2012510.81%2C%2012366.73%2C%2012395.72%2C%2012449.68%2C%2012199.21%2C%2012220.74%2C%2012159.69%2C%2012266.46%2C%2012177.52%2C%2012175.77%2C%2012375.35%2C%2012513.62%2C%2012597.43%2C%2012607.63%2C%2012607.73%2C%2012551.28%2C%2012411.58%2C%2012530.95%2C%2012790.89%2C%2012715.48%2C%2012589.89%2C%2012682.53%2C%2012713.9%2C%2012785.32%2C%2012866.9%2C%2012970.53%2C%2012926.56%2C%2012875.66%2C%2012939.17%2C%2012900.97%2C%2012906.37%2C%2012792.28%2C%2012797.94%2C%2012597.35%2C%2012709.71%2C%2012670.47%2C%2012620.44%2C%2012525.63%2C%2012633.21%2C%2012529.56%2C%2012525.69%2C%2012560.7%2C%2012355.54%2C%2011881.3%2C%2011945.69%2C%2012098.26%2C%2012176.9%2C%2012104.44%2C%2012226.7%2C%2012359.8%2C%2012360.37%2C%2012234.15%2C%2012140.25%2C%2012193.81%2C%2012155.66%2C%2012367.82%2C%2012313.16%2C%2012231.97%2C%2012026.37%2C%2012181.86%2C%2012191.57%2C%2012075.27%2C%2012010.09%2C%2011891.88%2C%2011959.39%2C%2011941.89%2C%2011636.76%2C%2011987.31%2C%2011986.78%2C%2011862.28%2C%2011871.59%2C%2011675.7%2C%2011300.13%2C%2011204.67%2C%2011057.06%2C%2011493.36%2C%2011391.1%2C%2011495.69%2C%2011678.94%2C%2011682.22%2C%2011900.96%2C%2012061.87%2C%2012184.99%2C%2012171.28%2C%2012202.62%2C%2012099.5%2C%2012131.45%2C%2012121.67%2C%2012155.95%2C%2012325.58%2C%2012243.73%2C%2012161.53%2C%2012179.08%2C%2012340.87%2C%2012376.97%2C%2012320.1%2C%2012372.46%2C%2012507.69%2C%2012528.61%2C%2012378.87%2C%2012378.68%2C%2012475.08%2C%2012281.42%2C%2012310.17%2C%2012301.33%2C%2012258.33%2C%2012084.98%2C%2011933.28%2C%2012051.48%2C%2012068.41%2C%2012128.76%2C%2011971.73%2C%2012001.88%2C%2011880.24%2C%2011877.27%2C%2011730.42%2C%2011444.18%2C%2011541.72%2C%2011553.66%2C%2011506.13%2C%2011650.42%2C%2011672.23%2C%2011730.44%2C%2011579.14%2C%2011309.49%2C%2011308.98%2C%2011466.28%2C%2011483.56%2C%2011491.8%2C%2011647.17%2C%2011736.26%2C%2011611.38%2C%2011494.12%2C%2011550.2%2C%2011529.16%2C%2011534.18%2C%2011467.39%2C%2011322.43%2C%2011084.62%2C%2010896.25%2C%2010699.07%2C%2010783.59%2C%2010475.37%2C%2010451.31%2C%2010485.91%2C%2010479.84%2C%2010528.34%2C%2010453.31%2C%2010823.12%2C%2010906.82%2C%2010809.57%2C%2010811.75%2C%2010741.21%2C%2010770.4%2C%2010881.97%2C%2010702.5%2C%2010840.6%2C%2010940.98%2C%2011015.03%2C%2011027.16%2C%2011069.83%2C%2010904.85%2C%2010799.52%2C%2010982.09%2C%2011010.18%2C%2011122.08%2C%2011059.49%2C%2011134.74%2C%2011096.12%2C%2011129.35%2C%2011102.31%2C%2011056.74%2C%2011129.33%2C%2011145.91%2C%2011118.1%2C%2011178.99%2C%2011202.66%2C%2011123.07%2C%2011166.32%2C%2011132.48%2C%2011155.1%2C%2011154.58%2C%2011128.24%2C%2011171.54%2C%2011130.44%2C%2011128.19%2C%2011167.59%2C%2011156.72%2C%2011085.84%2C%2010933.06%2C%2011012.87%2C%2011063.88%2C%2010942.16%2C%2010896.74%2C%2010884.95%2C%2010855.03%2C%2010663.44%2C%2010891.71%2C%2010819.54%2C%2010834.18%2C%2010805.16%2C%2010790.32%2C%2010900.24%2C%2010990.75%2C%2010891.54%2C%2010754.4%2C%2010746.7%2C%2010610.65%2C%2010617.01%2C%2010476.54%2C%2010429.4%2C%2010297.65%2C%2010137.78%2C%2010072.62%2C%2010126.43%2C%2010220.76%2C%2010126.99%2C%2010267.55%2C%2010290.71%2C%2010590.92%2C%2010477.69%2C%2010391.13%2C%2010308.57%2C%2010262.52%2C%2010207.83%2C%2010199.32%2C%2010227.9%2C%2010329.34%2C%2010498.71%2C%2010578.76%2C%2010484.14%2C%2010473.45%2C%2010418.6%2C%2010595.53%2C%2010773.34%2C%2010817.21%2C%2010706.62%2C%2010772.37%2C%2010827.93%2C%2010783.65%2C%2010806.23%2C%2010710.59%2C%2010787.77%2C%2010750.39%2C%2010827.04%2C%2010904.33%2C%2011120.49%2C%2011127.15%2C%2010999.59%2C%2011026.22%2C%2010936.62%2C%2010917.88%2C%2011045.49%2C%2011085.04%2C%2011074.3%2C%2011094.46%2C%2011157.56%2C%2011168.03%2C%2011162.16%2C%2011077.81%2C%2011127.77%2C%2011238.2%2C%2011198.13%2C%2011194.67%2C%2011109.33%2C%2011009.95%2C%2011004.53%2C%2011068.3%2C%2011033.64%2C%2011136.62%2C%2011160.69%2C%2010880.14%2C%2010770.38%2C%2010773.23%2C%2010659.19%2C%2010845.59%2C%2010774.64%2C%2010804.68%2C%2010839.22%2C%2010812.67%2C%2010857.35%2C%2010729.4%5D%3B%0Aconst%20testingData%20%3D%20%5B10978.64%2C%2011140.27%2C%2011057.39%2C%2011144.54%2C%2011212.57%2C%2011162.15%2C%2011246.01%2C%2011287.82%2C%2011290.79%2C%2011435.99%2C%2011401.99%2C%2011366.62%2C%2011258.97%2C%2011295.02%2C%2011406.27%2C%2011406.29%2C%2011404.77%2C%2011317.56%2C%2011332.3%2C%2011379.64%2C%2011285.78%2C%2011200.93%2C%2011188.42%2C%2011349.39%2C%2011283.25%2C%2011233.87%2C%2011276.28%2C%2011217.73%2C%2011130.46%2C%2011209.34%2C%2011231.91%2C%2011272.67%2C%2011194.91%2C%2011256.29%2C%2011266.68%2C%2011282.16%2C%2011300.29%2C%2011247.75%2C%2011181.77%2C%2011219.93%2C%2011098.35%2C%2011056.08%2C%2011165.58%2C%2011190.09%2C%2011147.25%2C%2011064.08%2C%2011025.26%2C%2010948.85%2C%2010765.26%2C%2010632.05%2C%2010716.72%2C%2010516.4%2C%2010719.1%2C%2010613.55%2C%2010643.64%2C%2010792.58%2C%2010782.28%2C%2010718.54%2C%2010634.04%2C%2010786.22%2C%2010839.11%2C%2010963.31%2C%2011032.21%2C%2011106.24%2C%2011093.09%2C%2011073.48%2C%2011115.4%2C%2011230.07%2C%2011265.3%2C%2011231.99%2C%2011258.95%2C%2011342.86%2C%2011311.76%2C%2011358.98%2C%2011366.22%2C%2011390.64%2C%2011460.58%2C%2011467.2%2C%2011513.12%2C%2011364.91%2C%2011361.89%2C%2011437.14%2C%2011423.33%2C%2011506.19%2C%2011456.37%2C%2011554.24%2C%2011595.25%2C%2011546.04%2C%2011447.23%2C%2011522.97%2C%2011564.73%2C%2011578.25%2C%2011519.87%2C%2011437.78%2C%2011571.16%2C%2011553.23%2C%2011484.9%2C%2011383.14%2C%2011325.26%2C%2011434.24%2C%2011282.45%2C%2011217.89%2C%2011296.28%2C%2011443.35%2C%2011415%2C%2011468.27%2C%2011348.11%2C%2011308.9%2C%2011254.42%2C%2011301.25%2C%2011327.27%2C%2011278.3%2C%2011302.83%2C%2011386.26%2C%2011306.64%2C%2011215.91%2C%2011173.65%2C%2011183.42%2C%2011221.22%2C%2011141.9%2C%2011142.65%2C%2011183.55%2C%2011170.51%2C%2011280.29%5D%3B%0A%0A%2F%2F%20further%20constants%0Aconst%20PREDICTION_LIMIT%20%3D%20trainingData.length%20%2F%202%3B%0Aconst%20GRAPH_WIDH%20%3D%20600%3B%0A%0A%2F%2F%20neural%20network%20structure%0Aconst%20MODEL_LAYERS%20%3D%20%5B%0A%09tf.layers.dense%28%7B%0A%09%09name%3A%20%27HiddenLayer1%27%2C%0A%09%09inputShape%3A%20%5BTIMESERIES_FEATURES%5D%2C%0A%09%09units%3A%20ANZAHL_HIDDEN_NEURONS%2C%0A%09%09activation%3A%20%27LeakyReLU%27%0A%09%7D%29%2C%0A%09tf.layers.dense%28%7B%0A%09%09name%3A%20%27HiddenLayer2%27%2C%0A%09%09units%3A%20ANZAHL_HIDDEN_NEURONS%2C%0A%09%09activation%3A%20%27LeakyReLU%27%0A%09%7D%29%2C%0A%09tf.layers.dense%28%7B%0A%09%09name%3A%20%27OutputLayer%27%2C%0A%09%09units%3A%201%2C%0A%09%09activation%3A%20%27linear%27%0A%09%7D%29%0A%5D%3B%0A%0A%2F%2F%20neural%20network%20algorithms%0Aconst%20MODEL_COMPILE%20%3D%20%7B%0A%09optimizer%3A%20tf.train.adam%28LERNRATE%29%2C%0A%09loss%3A%20tf.losses.absoluteDifference%0A%7D%3B%0A%0A%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20DATA%20HANDLING%20FUNCTIONS%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%0A%2F%2F%0A%2F%2F%20create%20input%20data%0A%2F%2F%0Afunction%20createInputArray%28valueArray%29%20%7B%0A%09let%20inputArray%20%3D%20new%20Array%28valueArray.length%20-%20TIMESERIES_FEATURES%29.fill%280%29.map%28%28%29%20%3D%3E%20new%20Array%28TIMESERIES_FEATURES%29.fill%280%29%29%3B%20%2F%2F%20empty%20two-dimensional%20array%0A%09for%20%28let%20v%20%3D%200%3B%20v%20%3C%20valueArray.length%20-%20TIMESERIES_FEATURES%3B%20v%2B%2B%29%20%7B%0A%09%09for%20%28let%20f%20%3D%200%3B%20f%20%3C%20TIMESERIES_FEATURES%3B%20f%2B%2B%29%20%7B%0A%09%09%09inputArray%5Bv%5D%5Bf%5D%20%3D%20valueArray%5Bv%20%2B%20f%5D%3B%0A%09%09%7D%0A%09%7D%0A%09return%20inputArray%3B%0A%7D%0A%0A%0A%2F%2F%0A%2F%2F%20create%20output%20data%0A%2F%2F%0Afunction%20createOutputArray%28valueArray%29%20%7B%0A%09let%20outputArray%20%3D%20new%20Array%28valueArray.length%20-%20TIMESERIES_FEATURES%29.fill%280%29%3B%0A%09for%20%28v%20%3D%200%3B%20v%20%3C%20valueArray.length%20-%20TIMESERIES_FEATURES%3B%20v%2B%2B%29%20%7B%0A%09%09outputArray%5Bv%5D%20%3D%20valueArray%5Bv%20%2B%20TIMESERIES_FEATURES%5D%3B%0A%09%7D%0A%09return%20outputArray%3B%0A%7D%0A%0A%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20NEURAL%20NETWORK%20FUNCTIONS%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%0A%2F%2F%0A%2F%2F%20build%20model%0A%2F%2F%0Afunction%20buildModel%28%29%20%7B%0A%09const%20model%20%3D%20tf.sequential%28%7B%0A%09%09layers%3A%20MODEL_LAYERS%0A%09%7D%29%3B%0A%09%2F%2F%20neural%20network%20training%0A%09model.compile%28MODEL_COMPILE%29%3B%0A%09return%20model%3B%0A%7D%0A%0A%0A%2F%2F%0A%2F%2F%20train%20model%0A%2F%2F%0Aasync%20function%20trainModel%28model%2C%20trainInput%2C%20trainOutput%29%20%7B%0A%09let%20history%20%3D%20await%20model.fit%28%0A%09%09tf.tensor%28trainInput%29%2C%20tf.tensor%28trainOutput%29%2C%20%7B%0A%09%09%09epochs%3A%20ANZAHL_EPOCHEN%20%2B%201%2C%0A%09%09%09batchSize%3A%20trainInput.length%2C%0A%09%09%09shuffle%3A%20true%2C%0A%09%09%09callbacks%3A%20%5B%0A%09%09%09%09tfvis.show.fitCallbacks%28%7B%0A%09%09%09%09%09name%3A%20%27Trainingsfehler%27%2C%0A%09%09%09%09%09tab%3A%20%27Training%27%2C%0A%09%09%09%09%09styles%3A%20%7B%0A%09%09%09%09%09%09width%3A%20GRAPH_WIDH%0A%09%09%09%09%09%7D%0A%09%09%09%09%7D%2C%20%5B%27loss%27%5D%2C%20%7B%0A%09%09%09%09%09height%3A%20200%2C%0A%09%09%09%09%09callbacks%3A%20%5B%27onEpochEnd%27%5D%2C%0A%09%09%09%09%09yLabel%3A%20%27MSE%27%0A%09%09%09%09%7D%29%2C%0A%09%09%09%5D%0A%09%09%7D%29%3B%0A%09return%20history%3B%0A%7D%0A%0A%0A%2F%2F%0A%2F%2F%20predict%20timeseries%20ahead%20and%20return%20object%20for%20tfvis%0A%2F%2F%0Aasync%20function%20predictTimeseries%28model%2C%20inputArray%2C%20observedArray%29%20%7B%0A%0A%09%2F%2F%20create%20last%20known%20input%0A%09let%20inputSample%20%3D%20%5B%5D%3B%0A%09inputSample.push%28%5B%5D%29%3B%0A%09for%20%28let%20t%20%3D%200%3B%20t%20%3C%20TIMESERIES_FEATURES%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09inputSample%5B0%5D.push%28inputArray%5BinputArray.length%20-%20TIMESERIES_FEATURES%20%2B%20t%5D%29%3B%0A%09%7D%0A%0A%09%2F%2F%20predict%20ahead%0A%09let%20outputTensor%2C%20outputArray%3B%0A%09let%20predictedOutput%20%3D%20%5B%5D%3B%0A%09for%20%28t%20%3D%200%3B%20t%20%3C%20observedArray.length%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09%2F%2F%20predict%20one%20timestep%0A%09%09outputTensor%20%3D%20await%20model.predict%28tf.tensor%28inputSample%29%29%3B%0A%09%09outputArray%20%3D%20await%20outputTensor.arraySync%28%29%3B%0A%09%09predictedOutput.push%28outputArray%5B0%5D%5B0%5D%29%3B%0A%09%09%2F%2F%20compose%20new%20input%20sample%0A%09%09inputSample%5B0%5D.shift%28%29%3B%0A%09%09inputSample%5B0%5D.push%28predictedOutput%5Bt%5D%29%3B%0A%09%7D%0A%09return%20predictedOutput%3B%0A%7D%0A%0A%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20FUNCTIONS%20FOR%20VISUALISATION%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%2F%2F%0A%2F%2F%20draw%20timeseries%20prediction%0A%2F%2F%0Afunction%20drawTrainingData%28trainingData%29%20%7B%0A%09%2F%2F%20training%20values%0A%09let%20trainingArrayObject%20%3D%20%5B%5D%3B%0A%09for%20%28let%20t%20%3D%200%3B%20t%20%3C%20trainingData.length%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09trainingArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20trainingData%5Bt%5D%20%2a%2010%0A%09%09%7D%29%3B%0A%09%7D%0A%09%2F%2F%20draw%20everything%0A%09data%20%3D%20%7B%0A%09%09values%3A%20%5BtrainingArrayObject%5D%2C%0A%09%09series%3A%20%5B%22Trainingsdaten%22%5D%0A%09%7D%3B%0A%09surface%20%3D%20%7B%0A%09%09name%3A%20%22SMI%20Trainingsdaten%202021%20%26%202022%22%2C%0A%09%09tab%3A%20%27Trainingsdaten%27%2C%0A%09%09styles%3A%20%7B%0A%09%09%09width%3A%20GRAPH_WIDH%0A%09%09%7D%0A%09%7D%3B%0A%09look%20%3D%20%7B%0A%09%09xLabel%3A%20%27Aufeinanderfolgende%20B%C3%B6rsentage%27%2C%0A%09%09yLabel%3A%20%27SMI-Index%27%2C%0A%09%09zoomToFit%3A%20true%2C%0A%09%09seriesColors%3A%20%5B%22limegreen%22%5D%0A%09%7D%3B%0A%09tfvis.render.linechart%28surface%2C%20data%2C%20look%29%3B%0A%7D%0A%0A%0A%2F%2F%0A%2F%2F%20draw%20timeseries%20prediction%0A%2F%2F%0Afunction%20drawTimeseries%28pastArray%2C%20observedArray%2C%20predictedArray%29%20%7B%0A%09%2F%2F%20past%0A%09let%20pastArrayObject%20%3D%20%5B%5D%3B%0A%09%2F%2F%20get%20past%20values%0A%09for%20%28let%20t%20%3D%200%3B%20t%20%3C%20TIMESERIES_FEATURES%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09pastArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20pastArray%5Bt%20%2B%20pastArray.length%20-%20TIMESERIES_FEATURES%5D%20%2a%2010%0A%09%09%7D%29%3B%0A%09%7D%0A%09for%20%28let%20t%20%3D%20TIMESERIES_FEATURES%3B%20t%20%3C%20TIMESERIES_FEATURES%20%2B%20observedArray.length%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09pastArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20null%0A%09%09%7D%29%3B%0A%09%7D%0A%09%2F%2F%20observed%20values%0A%09let%20observedArrayObject%20%3D%20%5B%5D%3B%0A%09for%20%28let%20t%20%3D%200%3B%20t%20%3C%20TIMESERIES_FEATURES%20-%201%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09observedArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20null%0A%09%09%7D%29%3B%0A%09%7D%0A%09observedArrayObject.push%28%7B%0A%09%09x%3A%20TIMESERIES_FEATURES%20-%201%2C%0A%09%09y%3A%20pastArray%5BpastArray.length%20-%201%5D%20%2a%2010%0A%09%7D%29%3B%0A%09for%20%28let%20t%20%3D%20TIMESERIES_FEATURES%3B%20t%20%3C%20TIMESERIES_FEATURES%20%2B%20observedArray.length%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09observedArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20observedArray%5Bt%20-%20TIMESERIES_FEATURES%5D%20%2a%2010%0A%09%09%7D%29%3B%0A%09%7D%0A%09%2F%2F%20predicted%20values%0A%09let%20predictedArrayObject%20%3D%20%5B%5D%3B%0A%09for%20%28let%20t%20%3D%200%3B%20t%20%3C%20TIMESERIES_FEATURES%20-%201%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09predictedArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20null%0A%09%09%7D%29%3B%0A%09%7D%0A%09predictedArrayObject.push%28%7B%0A%09%09x%3A%20TIMESERIES_FEATURES%20-%201%2C%0A%09%09y%3A%20pastArray%5BpastArray.length%20-%201%5D%20%2a%2010%0A%09%7D%29%3B%0A%09for%20%28let%20t%20%3D%20TIMESERIES_FEATURES%3B%20t%20%3C%20TIMESERIES_FEATURES%20%2B%20observedArray.length%3B%20t%20%3D%20t%20%2B%201%29%20%7B%0A%09%09predictedArrayObject.push%28%7B%0A%09%09%09x%3A%20t%2C%0A%09%09%09y%3A%20predictedArray%5Bt%20-%20TIMESERIES_FEATURES%5D%20%2a%2010%0A%09%09%7D%29%3B%0A%09%7D%0A%09%2F%2F%20draw%20everything%0A%09data%20%3D%20%7B%0A%09%09values%3A%20%5BobservedArrayObject%2C%20predictedArrayObject%2C%20pastArrayObject%5D%2C%0A%09%09series%3A%20%5B%22beobachtet%22%2C%20%22vorhergesagt%22%2C%20%22vergangen%22%5D%0A%09%7D%3B%0A%09surface%20%3D%20%7B%0A%09%09name%3A%20%22SMI%20Vorhersage%201te%20Jahresh%C3%A4lfte%202023%22%2C%0A%09%09tab%3A%20%27Resultat%27%2C%0A%09%09styles%3A%20%7B%0A%09%09%09width%3A%20GRAPH_WIDH%0A%09%09%7D%0A%09%7D%3B%0A%09look%20%3D%20%7B%0A%09%09xLabel%3A%20%27Aufeinanderfolgende%20B%C3%B6rsentage%27%2C%0A%09%09yLabel%3A%20%27SMI-Index%27%2C%0A%09%09zoomToFit%3A%20true%2C%0A%09%09seriesColors%3A%20%5B%22coral%22%2C%20%22saddlebrown%22%2C%20%22limegreen%22%5D%0A%09%7D%3B%0A%09tfvis.render.linechart%28surface%2C%20data%2C%20look%29%3B%0A%7D%0A%0A%0A%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%2F%2F%20MAIN%20PROGRAM%0A%2F%2F%20%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%2a%0A%0A%0A%2F%2F%0A%2F%2F%20main%20function%0A%2F%2F%0Aasync%20function%20run%28%29%20%7B%0A%09%2F%2Fnoprotect%0A%0A%09%2F%2F%20check%20for%20too%20many%20input%20features%0A%09if%20%28TIMESERIES_FEATURES%20%3E%20PREDICTION_LIMIT%29%20%7B%0A%09%09console.log%28%22%E2%9A%A0%EF%B8%8F%20Die%20Anzahl%20TIMESERIES_FEATURES%20ist%20zu%20hoch%21%22%29%3B%0A%09%09return%3B%0A%09%7D%0A%0A%09%2F%2F%20write%20preferences%20on%20console%0A%09console.log%28%22SMI-Vorhersage%22%29%3B%0A%09console.log%28%22Neuronales%20Netz%3A%20Anzahl%20Eingangsgr%C3%B6ssen%3A%20%22%20%2B%20TIMESERIES_FEATURES%20%2B%20%22%2C%20Anzahl%20Hidden%20Neuronen%3A%20%22%20%2B%20ANZAHL_HIDDEN_NEURONS%29%3B%0A%09console.log%28%22Training%3A%20Lernrate%3A%20%22%20%2B%20LERNRATE%20%2B%20%22%2C%20Epochen%3A%20%22%20%2B%20ANZAHL_EPOCHEN%29%3B%0A%0A%09drawTrainingData%28trainingData%29%3B%0A%0A%09%2F%2F%20create%20input%20and%20output%20data%0A%09let%20inputArray%20%3D%20createInputArray%28trainingData%29%3B%0A%09let%20outputArray%20%3D%20createOutputArray%28trainingData%29%3B%0A%0A%09%2F%2F%20build%20and%20show%20model%0A%09let%20model%20%3D%20buildModel%28%29%3B%0A%09if%20%28%21tfvis.visor%28%29.isFullscreen%28%29%29%20%7B%0A%09%09tfvis.visor%28%29.toggleFullScreen%28%29%3B%0A%09%7D%0A%09tfvis.show.modelSummary%28%7B%0A%09%09name%3A%20%27Neuronales%20Netz%27%2C%0A%09%09tab%3A%20%27Modell%27%2C%0A%09%09styles%3A%20%7B%0A%09%09%09width%3A%20GRAPH_WIDH%0A%09%09%7D%0A%09%7D%2C%20model%29%3B%0A%0A%09%2F%2F%20train%20model%0A%09let%20history%20%3D%20await%20trainModel%28model%2C%20inputArray%2C%20outputArray%29%3B%0A%09console.log%28%22Entg%C3%BCltiger%20Trainingsfehler%20%28MSE%29%3A%20%22%20%2B%20history.history.loss%5BANZAHL_EPOCHEN%5D%29%3B%0A%0A%09%2F%2F%20predict%20and%20show%20timeseries%0A%09let%20predictedTimeseries%20%3D%20await%20predictTimeseries%28model%2C%20trainingData%2C%20testingData%29%3B%0A%09drawTimeseries%28trainingData%2C%20testingData%2C%20predictedTimeseries%29%3B%0A%0A%7D%0A%0A%0Adocument.addEventListener%28%27DOMContentLoaded%27%2C%20run%29%3B&css=undefined&html=%3Cscript%20src%3D%22https%3A%2F%2Fapp.exorciser.ch%2Flib%2Fp5.js%22%3E%3C%2Fscript%3E%0A%3Cscript%20src%3D%22https%3A%2F%2Fcdn.jsdelivr.net%2Fnpm%2F%40tensorflow%2Ftfjs%40latest%2Fdist%2Ftf.min.js%22%3E%3C%2Fscript%3E%0A%3Cscript%20src%3D%22https%3A%2F%2Fcdn.jsdelivr.net%2Fnpm%2F%40tensorflow%2Ftfjs-vis%22%3E%3C%2Fscript%3E&autorun=off&height=700px#SMI}}
  
 == ✍ Auftrag SMI – Teil 2 == == ✍ Auftrag SMI – Teil 2 ==
   - Starte das Programm mehrfach mit ein und derselben Einstellung und spiele danach etwas mit den Parametern herum. Schaue dir dabei immer wieder einmal den Trainingsfehler (d.h. loss (MSE)) am Ende des Trainings an. Fertige einen Screenshot der besten Prognose für das erste Halbjahr 2023 an. Vergleiche dein bestes Resultat mit denjenigen der anderen.   - Starte das Programm mehrfach mit ein und derselben Einstellung und spiele danach etwas mit den Parametern herum. Schaue dir dabei immer wieder einmal den Trainingsfehler (d.h. loss (MSE)) am Ende des Trainings an. Fertige einen Screenshot der besten Prognose für das erste Halbjahr 2023 an. Vergleiche dein bestes Resultat mit denjenigen der anderen.
-  - Wie beurteilst du die Qualität der Resultate und die Aussagekraft des Trainingsfehlers (MSE) für optisch bessere und schlechtere Vorhersagen? Schreibe zuerst deine Überlegungen in das Textfeld, vergleiche diese dann mit unseren Überlegungen. {{gem/plain?0=N4XyA#11c66d1814b07410}} ++Unsere Überlegungen|\\ \\ Der SMI fasst viele verschiedene Einflussfaktoren zusammen. Diesen nur mit dem SMI selber vorhersagen zu wollen, ist vermutlich ein Ding der Unmöglichkeit. Das äussert sich auch darin, dass jedes Training zufällig gute oder schlechte Prognosen generiert - unabhängig vom Wert des Trainingsfehlers. Darüber hinaus wird der Trainingsfehler nur für +1 Zeitschritt berechnet und nicht über eine längere Prognosedauer. Auch keine Fehler können sich bei der Vorhersage über so viele Zeitschritte schnell einmal summieren und zu einer unsinnigen Prognose führen.\\ \\ +++  - Wie beurteilst du die Qualität der Resultate und die Aussagekraft des Trainingsfehlers (MSE) für optisch bessere und schlechtere Vorhersagen? Schreibe zuerst deine Überlegungen in das Textfeld, vergleiche diese dann mit unseren Überlegungen. {{gem/plain?0=N4XyA#11c66d1814b07410}} ++Unsere Überlegungen|\\ \\ Der SMI fasst viele verschiedene Einflussfaktoren zusammen. Diesen nur mit dem SMI selber vorhersagen zu wollen, ist vermutlich ein Ding der Unmöglichkeit. Das äussert sich auch darin, dass jedes Training zufällig gute oder schlechte Prognosen generiert - unabhängig vom Wert des Trainingsfehlers. Darüber hinaus wird der Trainingsfehler nur für +1 Zeitschritt berechnet und nicht über eine längere Prognosedauer. Auch kleine Fehler können sich bei der Vorhersage über so viele Zeitschritte schnell einmal summieren und zu einer unsinnigen Prognose führen.\\ \\ ++
   - Überlegt nach Möglichkeit zu zweit. Welche weiteren Eingangsgrössen zusätzlich zum SMI selber könnten die Resultate verbessern? Hier darfst du kreativ sein. {{gem/plain?0=N4XyA#2c5d0c2c50ea945b}}   - Überlegt nach Möglichkeit zu zweit. Welche weiteren Eingangsgrössen zusätzlich zum SMI selber könnten die Resultate verbessern? Hier darfst du kreativ sein. {{gem/plain?0=N4XyA#2c5d0c2c50ea945b}}
   - Überlegt nach Möglichkeit zu zweit. Welche grundsätzlichen Herausforderungen siehst du bei Wirtschaftsprognosen wie beim SMI? Schreibe zuerst deine Überlegungen in das Textfeld, vergleiche dann mit unseren Überlegungen. {{gem/plain?0=N4XyA#38b2c780c6d3eac0}} ++Unserere Überlegungen|\\ \\ Im Vergleich zu Wetterprognosen schätzen wir Wirtschaftsprognosen als noch herausfordernder ein.\\ \\ Viele verfügbaer Wirtschafszahlen wiederspiegeln weniger die Gegenwart sondern beschreiben viel mehr vergangene Zustände.\\ \\ Hinzu kommt Folgendes. Eine Wetterprognose ändert das Wetter nicht. Eine Wirtschaftsprognose, die von den richtigen Personen geeignet publiziert wird, kann sehr wohl die Wirtschaft beeinflussen.\\ \\ Weiter muss auch berücksichtigt werden, dass seltene Ereignisse (d.h. besonders interessante Ereignisse) nur schwer vorhersagbar sind und auch überlappende Muster (ähnliche Wirtschaftssituationen, welche sich danach unterschiedlich entwickeln) die Prognosegüte limitieren.\\ \\    - Überlegt nach Möglichkeit zu zweit. Welche grundsätzlichen Herausforderungen siehst du bei Wirtschaftsprognosen wie beim SMI? Schreibe zuerst deine Überlegungen in das Textfeld, vergleiche dann mit unseren Überlegungen. {{gem/plain?0=N4XyA#38b2c780c6d3eac0}} ++Unserere Überlegungen|\\ \\ Im Vergleich zu Wetterprognosen schätzen wir Wirtschaftsprognosen als noch herausfordernder ein.\\ \\ Viele verfügbaer Wirtschafszahlen wiederspiegeln weniger die Gegenwart sondern beschreiben viel mehr vergangene Zustände.\\ \\ Hinzu kommt Folgendes. Eine Wetterprognose ändert das Wetter nicht. Eine Wirtschaftsprognose, die von den richtigen Personen geeignet publiziert wird, kann sehr wohl die Wirtschaft beeinflussen.\\ \\ Weiter muss auch berücksichtigt werden, dass seltene Ereignisse (d.h. besonders interessante Ereignisse) nur schwer vorhersagbar sind und auch überlappende Muster (ähnliche Wirtschaftssituationen, welche sich danach unterschiedlich entwickeln) die Prognosegüte limitieren.\\ \\